Preperiodic portraits for unicritical polynomials over a rational function field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbit Portraits of Unicritical Antiholomorphic Polynomials

Orbit portraits were introduced by Goldberg and Milnor as a combinatorial tool to describe the patterns of all periodic dynamical rays landing on a periodic cycle of a quadratic polynomial. This encodes information about the dynamics and the parameter spaces of these maps. We carry out a similar analysis for unicritical antiholomorphic polynomials, and give an explicit description of the orbit ...

متن کامل

Portraits of Preperiodic Points for Rational Maps

Let K be a function field over an algebraically closed field k of characteristic 0, let φ ∈ K(z) be a rational function of degree at least equal to 2 for which there is no point at which φ is totally ramified, and let α ∈ K. We show that for all but finitely many pairs (m,n) ∈ Z≥0×N there exists a place p of K such that the point α has preperiod m and minimum period n under the action of φ. Thi...

متن کامل

Heights and Preperiodic Points of Polynomials over Function Fields

Let K be a function field in one variable over an arbitrary field F. Given a rational function φ ∈ K(z) of degree at least two, the associated canonical height on the projective line was defined by Call and Silverman. The preperiodic points of φ all have canonical height zero; conversely, if F is a finite field, then every point of canonical height zero is preperiodic. However, if F is an infin...

متن کامل

Square-free values of polynomials over the rational function field

Article history: Received 23 August 2013 Accepted 23 August 2013 Available online xxxx Communicated by K. Soundararajan

متن کامل

The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: a Refined Conjecture

We classify the graphs that can occur as the graph of rational preperiodic points of a quadratic polynomial over Q, assuming the conjecture that it is impossible to have rational points of period 4 or higher. In particular, we show under this assumption that the number of preperiodic points is at most 9. Elliptic curves of small conductor and the genus 2 modular curves X1(13), X1(16), and X1(18...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2017

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7033